
JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 54, NO. 5, PP. 615–641 (2017)

Research Article

Bridging Inquiry-BasedScience andConstructionism:Exploring the
AlignmentBetweenStudentsTinkeringWithCode ofComputationalModels

andGoals of Inquiry

Aditi Wagh,1 Kate Cook-Whitt,2 and Uri Wilensky3

1Tufts University, Medford, Massachusetts
2Thomas College, Waterville, Maine

3Northwestern University, Evanston, Illinois

Received 15 May 2016; Accepted 8 November 2016

Abstract: Research on the design of learning environments for K-12 science education has been

informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has

emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused

on designing intuitively accessible authoring environments and microworlds that embody the structure of a

content domain in program code. Learners build, extend, or explore artifacts to make sense of underlying

mechanisms. In this paper, we bridge these bodies of work to argue that interacting with program code of a

computational model can facilitate engagement in inquiry-based science. Tinkering with code involves

students playfullymanipulating the code of a computational model to generate and pursue goals or questions

in the model. We use data from video-recorded interviews with eleven 10th grade students in which they

demonstrate their tinkering explorations with code of models of biological phenomena, and describe related

interactions with other students. We analyze these data using a conceptual framework of inquiry-based

science consisting of three components: pursuit of investigations, sense making of investigations, and

engagement with a community. We characterize points of alignment between students’ tinkering and these

components to argue that tinkering with code underlying computational models facilitated engagement in

inquiry-based science. We also demonstrate how it provided opportunities for disciplinary engagement in

two ways: Computational engagement or using code as a representational medium to pursue questions of

interest, and conceptual engagement, or coming to notice and explain resulting changes in the modeled

phenomenon.More broadly, we argue that the constructionist approach of interacting with andmanipulating

program code of computational models can facilitate productive forms of engagement with inquiry-based

science. We discuss affordances of interacting with code as a way to engage in inquiry, and provide design

recommendations for the adoption of manipulation of code as an inquiry practice. # 2017 Wiley

Periodicals, Inc. J Res Sci Teach 54:615–641, 2017
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The design of learning environments for K-12 science education is heavily informed by two

bodies of research, inquiry-based science and Constructionism. Both bodies of work date back to

the 1960s, and have since progressed rather orthogonally. Inquiry-based science has emphasized

facilitating participation in authentic scientific practices to provide opportunities for students to
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engage in the cognitive, epistemic, and social processes underlying professional science (e.g.,

Chinn & Malhotra, 2002; Grandy & Duschl, 2007; NRC, 2010; Reiser et al., 2001). Inquiry is

generally described as generating questions about a scientific phenomenon, making systematic

observations and/or conducting experiments to collect data, and interpreting the data to generate

evidence-based claims about the phenomenon. The second body of literature, Constructionism,

has focused on the design of computational microworlds that represent the structure of scientific

content in the form of program code in ways that are intuitively accessible and engaging for

learners (Edwards, 1995). Learners interactwith thesemicroworlds to programand debugmodels,

extend existing models, and/or explore pre-built models. By interacting with these microworlds,

learners think through and with program code to make sense of mechanisms underlying the

scientific content (Papert, 1980).

Our goal is to bridge between these two bodies of work by arguing that interacting with and

manipulating program code can facilitate engagement in inquiry-based science. We make this

argument by examining points of alignment between inquiry-based science and students’ on-the-

fly tinkering explorations with code underlying a computational model. We demonstrate how

these explorations provided opportunities for disciplinary engagement in the form of conceptual

and computational engagement. Drawing from the literature, we present a conceptual framework

of inquiry-based science that abstracts three components of inquiry: pursuit of open-ended

investigations, sense-making of investigations, and engagement with the learning community.We

use this framework as a lens to examine students’ tinkering explorations with code underlying

computational models to argue that even simply tinkering with code facilitated engagement in

inquiry-based science.

Inquiry-Based Science in K-12 Classrooms

Inquiry-based science is grounded in Dewey’s assertion that science learning should be

authentic to science practice (1964). Since then, thevision and practice of inquiry-based science in

K-12 classrooms has transformed over time (Bybee, 2000). Approaches to fostering inquiry have

ranged fromhighly structured, teacher-prescribed ones tomore open-ended, learner-centric forms

of inquiry (Herron, 1971; Schwab, 1960). In recent years, more open-ended and learner-centric

forms of inquiry reflecting the cognitive, epistemic, and social practices of scientists have been

emphasized by the research-based community in science education (Chinn & Malhotra, 2002;

Reiser et al., 2001). The “open-ended” aspect of inquiry involves students investigating

meaningful questions and problems that are content rich, and do not have a single correct answer

or require a single approach to work on them, while the “learner-centric” aspect entails giving

students agency their investigations (e.g., Blumenfeld, Krajcik, Marx, & Soloway, 2000;

Bransford, Brown,&Cocking, 2000).

Several approaches have been proposed to engage students in open-ended and learner-centric

inquiry. These approaches vary in terms of the specific student activities and contexts for inquiry.

For instance, one form of inquiry consists of students working on a project in groups to conduct

investigations with the goal of answering a question rooted in a real world problem (Krajcik et al.,

1998). Students generate their own sub-questions, design, and plan investigations using provided

materials or by constructing their own apparatus, select variables to investigate, and then collect

data by conducting experiments and making observations. Through this process, students

frequently receive feedback from the learner community on the design of their investigations and

their findings. Learning by design constitutes another form of inquiry wherein students

collaboratively work on a design challenge to build a physical device by participating in iterative

interrelated inquiry cycles (Kolodner et al., 2003). The first cycle involves designing their artifact

by developing formative plans, getting feedback from the class community, revising their designs,

Journal of Research in Science Teaching

616 WAGH, COOK-WHITT, AND WILENSKY



and actually building them, and then presenting their work to class. The other cycle involves

designing and conducting investigations using their artifact, analyzing the results, and sharing

their work with classmates. Other approaches to inquiry involve students conducting extensive

investigations of a realworld system and building physicalmodels of the system for the purpose of

conducting their own investigations. These physical models serve as contexts for data generation

as students iterativelywork on problems tomake sense of their initial questions (Lehrer, Schauble,

&Lucas, 2008).

Sites for inquiry have also been situated in computer technologies. For instance,

students might be given direct access to archival data to record and identify interesting

trends that explain the driving question of the unit (Reiser et al., 2001; Tabak & Reiser,

1997), and to develop explanations by drawing on their observations from their

investigations and providing causal mechanisms for these observations (Sandoval & Reiser,

2004). Scientific visualizations of archival data have been used to foreground trends and

make them more readily avail for inspection and sense making (Edelson & O’Neill, 1994).

Computational models of scientific phenomena have been used to provide contexts for

students to design and conduct experiments to engage in inquiry (White & Frederiksen,

1998). Inquiry sites have also been provided using scaffolded virtual worlds in which

students can record and analyze data to solve real world problems in realistic settings (e.g.,

Metcalf, Kamarainen, Tutwiler, Grotzer, & Dede, 2011). Finally, computer technologies

have been used to engage in model building to represent causal relationships between

variables of a system (Jackson & Stratford, 1996; Stratford, Krajcik, & Soloway, 1998).

The goal of presenting these various approaches is to illustrate that contemporary research-

based forms of inquiry involve scaffolding students through characteristically open-ended and

learner-centric inquiry (NRC, 2000). Students are supported in designing and conducting

investigations to work on open-ended questions and develop explanations to account for the

phenomenon under investigation. Often, the whole class community plays an important role in

students’ inquiry process as they get feedback from and share ideas with their teacher and

classmates. The rationale that undergirds these diverse approaches is to support students in

engaging in practices that reflect the cognitive, epistemic, and discourse processes of real-world

scientists (e.g., Chinn&Malhotra, 2002).

Constructionism

Constructionism emphasizes designing objects for learning that embody structural ideas of a

content domain in ways that are intuitively accessible and engaging to learners. These objects can

take the form of microworlds, cognitively accessible representations in which the structures and

rules constituting a phenomenon are instantiated in the form of program code (Edwards, 1995).

Microworlds are representations that “do justice to the powerful logical structure of the subject,

but which at the same time mesh properly with the cognitive reality of human beings (diSessa,

1979, p. 239).” Learners interact with microworlds in various ways to discover mechanisms of a

phenomenon that is represented in programcode.

Learners can also use authoring environments to build or program sharable public artifacts

that represent the structures and rules underlying a phenomenon (Papert, 1980). Building a

representational artifact requires learners to articulate their prior intuitive conceptions in program

code, thereby making these conceptions available for inspection and debugging. This process of

inspecting and debugging one’s conceptions by assembling and revising program code to

represent a phenomenon allows for the generation of refined understandings (Papert, 1980).

Learners are supported through this building by easily interpretable feedback from the authoring

environment in response to their actions.
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Since Logo, research in Constructionism has focused on designing authoring environments

that make programming artifacts easily accessible to learners, while enabling a range of

constructions. Over the years, construction environments such as NetLogo (Wilensky, 1999),

AgentSheets (Repenning & Sumner, 1995), Scratch (Resnick et al., 2009), StageCast Creator

(Smith, Cypher, & Tesler, 2000), StarLogo TNG (Klopfer, Yoon, & Um, 2005), and others have

been widely used to engage students in building personal artifacts (e.g., Kafai, 1995) as well as

models of scientific and mathematical phenomena (e.g., Simpson et al., 2005). These models can

often be used as microworlds for learners. A central concern in the design of these construction

environments has been to provide primitives1 that are easily interpretable to learners and yet allow

for a range of possible artifact constructions (Simpson,Hoyles,&Noss, 2005;Wilensky, 2003).

Programming scientific models in these construction environments has taken two forms:

phenomena-basedmodeling in which learners use the construction units or primitives available in

a microworld to replicate a specific phenomenon, and exploration-based modeling in which

learners can experiment with different combinations of available primitives to examine resulting

patterns (Wilensky, 2003). Both forms of programming have been used to support learning (e.g.,

Klopfer, 2003; Louca, Druin, Hammer, &Dreher, 2003; Simpson et al., 2005;Wilkerson-Jerde &

Wilensky, 2010).

Besides programming an artifact or model from scratch, learners can also interact with

models by building on or adding to the existing code to explore new dimensions of the content or

making it more personally meaningful by adding new entities, rules, or variables to the model as

well as incorporating additional conditions using “extensiblemodels” (Wilensky, 2003). Learners

can also build on “half-baked microworlds” which are less developed representations of a

scientific phenomenon, primarily designed to serve as initial starting points or idea generators for

learners to extend them (Kynigos, 2007). Finally, learners can also run explorations with pre-built

models to discover how the structures and rules instantiated in code result in a phenomenon

(Blikstein &Wilensky, 2009; Edwards, 1995; Sengupta &Wilensky, 2009;White & Frederiksen,

1998;Wagh&Wilensky, 2012).

Although inquiry-based science emphasizes making engagement in authentic scientific

practices accessible to students, Constructionism focuses on designing objects for learning that

embody the structure of the content domain in code and align with learners’ existing ways of

thinking. Learner interactions with environments involve either directly manipulating program

code or by discovering the encodedmechanisms by exploringmicroworlds.

The constructionist activity that we examine in this paper involves students tinkeringwith the

program code underlying a computational model in NetLogo (Wilensky, 1999) to make changes

to a model. NetLogo is an agent-based modeling environment in which users can examine how

patterns at the level of the population arise from simple rules and interactions at the level of

individuals in a system. On running the model, students can explore how these simple rules can

result in complex andoften unpredictable patterns at the population level.The underlying program

code in NetLogo consists of variables and rules for individuals in a system. In NetLogo, the

program code can be easily accessed by clicking on the Code tab available at the top of the model

interface.

Tinkering With Code

Tinkering with code involves playful experimentation with minimal planning or a long-term

goal (Beckwith et al., 2006), by iteratively making and testing minor changes to code by trial and

error (Brandt, Guo, Lewenstein, Dontcheva, & Klemmer, 2009; Dorn & Guzdial, 2010; Law,

1998). It is often initiated and driven by children and involvesminimal adult involvement (Petre&

Blackwell, 2007). Turkle and Papert (1992) contrasted tinkering and bricolage with more logical
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and top-down approaches toworking on a task, arguing that both approaches are equally valid and

valuable, and share the same status: “Bricolage is a way to organize work. It is not a stage in a

progression to a more superior form” (p. 141). Indeed, studies have shown that the guess-and-

check processes (Burke & Kafai, 2010; Resnick et al., 2009) involved in tinkering can facilitate

sense making of important ideas in a programming language for novices (Perkins, Hancock,

Hobbs, Martin, & Simmons, 1986; Turkle & Papert, 1992). Others have found that tinkering

activities can serve as a valuable bridge between exploration and refinement of code for novice

programmers (Berland,Martin, Benton, Smith,&Davis, 2013).

In this paper, we characterize the ways in which on the fly tinkering with program code of

computational models facilitated engagement in inquiry-based science. To do this, we use a

conceptual framework of inquiry-based science as a lens to examine students’ content-related

tinkering explorations. In addition, we describe how tinkering with code provided opportunities

for engagement in computational and conceptual disciplinary practices.

Conceptual Framework for Inquiry-Based Science

Earlier in this paper, we presented numerous approaches designed to foster open-ended and

learner-centric inquiry in K-12 science classrooms. These approaches have underlying

commonalities that can be abstracted to identify some of the core components of inquiry. Indeed,

some researchers have made explicit attempts to do so. For instance, Chinn and Malhotra (2002)

put forth an evaluation framework to outline the cognitive and epistemic processes underlying

authentic inquiry and argued that inquiry-based curricula should incorporate these processes.

Quintana et al. (2004) identified three components of inquiry: sense making or testing out

hypotheses and interpreting data, managing control of the inquiry process, and articulating what

has been learned. They used these components to inform and strategize about design features to

support and scaffold students’ inquiry processes in a software system. NSES (2000) identifies five

important aspects of inquiry: engaging students in scientifically oriented questions, analyzing the

evidence with the goal of answering the question, constructing and critiquing explanations that

address these questions, comparing and evaluating one’s own explanations with other alternative

explanations, and communicating and justifying explanations to the learning community.

Drawing on these existing frameworks, we developed a conceptual framework to identify

core components of inquiry-based science that are common across these frameworks. These three

components are pursuit of open-ended investigations, sense-making of investigations, and

engagingwith the learning community.

Three Components of Inquiry-Based Science

The first component, pursuit of open-ended investigations involves two dimensions:

generation or identification of questions relevant to the scientific content under study, and the

design and implementation of investigations. Students can develop their own questions or engage

inmore guided investigations in which they are presented with an overarching goal and supported

in developing sub-questions of interest to them. Students design and conduct their own

investigations to answer these questions by planning procedures and implementing their

investigations to record data thatwill help answer this question or solve the problem. Studentsmay

be supported in their experimental design, data collection, or analysis of the data. The design and

implementation of investigationsmay include processes such as selecting variables to investigate,

developing measurement tools, planning experimental procedures, controlling for extraneous

variables, creating a data table, and recording data.

The second component constitutes sense making of investigations. This entails synthesizing

results from investigations, analyzing the data to draw general conclusions about the findings, and
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formulating a claim. Synthesizing results and analyzing data involve students noticing and

attending to relevant trends in the data that answer investigation questions. An integral aspect of

sense making includes making a claim, using evidence to support the claim, and providing

mechanistic reasoning that links the evidence and the claim. This process of sense making can

subsequently lead to thegeneration of newquestions, and new investigations.

Finally, the third component involves engagement with the learning community comprising

primarily of the teacher and other classmates, but possibly extending to other teachers or students

in different classes. This engagement can take the form of collaborations in which students work

with each other to work on similar investigations, or build off of each other’s investigations.

Students can also get feedback from each other both during various stages of their inquiry projects

as well as on their analysis and conclusions as well as engage in a dialog to share and persuade

classmates in this community of their claims.

The Study

This paper uses a case study approach situated in a high school Life Sciences classroom.

Students in the 10th grade Life Sciences classes were engaged in units on Population Dynamics

and Evolutionary Change. As part of the units, students explored NetLogo (Wilensky, 1999)

models of population dynamics and evolutionary change embedded in curricular supports

designed in the Web-based Inquiry Science Environment (WISE) (Linn, Clark, & Slotta, 2003).

Students engaged in guided investigations to develop questions using the models, develop

hypotheses, run the models to make observations and record data, and formulate evidence-based

explanations for their explorations. The goal was to use the models to make sense of specific

mechanisms of population dynamics and evolutionary change. Each unit lasted for approximately

2 weeks. These units were designed as part of a large project in which two computer-based

modeling unitswere implemented in high school science classrooms (NSF#XXXX).

Themodeling tool used by students in these units wasNetLogo (Wilensky, 1999). NetLogo is

a freely available and widely used open-source agent-based modeling platform. Agent-based

modeling is a representational system for modeling emergent systems. An agent-based model

consists of entities that comprise the system. Each entity is assigned properties and rules that are

relevant to the system being modeled. When the model is run, each entity repeatedly follows the

encoded rules to interact with other entities in the system. Over time, these interactions result in

emergent trends at the population level.

A NetLogo model includes three tabs: the Interface, Info, and Code tabs. The model,

accompanying graphs and select parameters for manipulation are displayed on the Interface tab.

The Info tab describes the encoded properties and rules assigned to the entities in themodel aswell

as ideas for extending the model. Finally, the Code tab includes all the code for the model. The

code tab is used to build the model. Any changes made in the code tab will result in changes to the

model.

Toward the end of the two units, the teacher2 noticed that students were browsing

through the Code tab in NetLogo to manipulate program code in their free time in and

outside of class. This observation intrigued the teacher because viewing and modifying

model code was not a part of the curriculum. Some students were also sharing findings

from their tinkering explorations with other students. The teacher followed up with these

students to discover that they had been tinkering with code outside of class through

multiple days of the units. She reported her observations to the research team. Because

interacting with code was student initiated, involved a diverse set of students (see Table 1),

and continued for a number of days, a decision was made to closely examine this case and

the kinds of changes students were making to the models.
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The decision to investigate how students were tinkering with code was made after the

class had finished working on the units. This decision was also motivated by the fact that

high school biology teachers from other schools participating in the project had reported

noticing students modifying model code in their free time in class without any external

prompting. We decided to use this site to investigate how students were modifying model

code because the teacher had taught the unit for 3 years, and was deeply familiar with the

pedagogical underpinnings of the project. Though she had no formal training in

programming, she had learned to read NetLogo code, by observing students tinkering with

code and through interactions with the research team.

Student Recruitment and Data Sources

Because our goals were to investigate the nature of students’ tinkering explorations, we first

tried to identify all the students who had modified model code. The teacher followed up with

students whom she had noticed tinkering with code, and asked for names of other students who

were doing the same. This led to the identification of 11 students, 9 boys and 2 girls, in the class

who had modified model code. These students differed in their academic performance in biology

and prior experiencewith programming. Table 1 illustrates students’ academic success in biology

and self-reported experience with programming. None of these students had programmed in

NetLogo before.

Each of these students participated in a semi-structured interview. Ten out of the eleven

interviews were audio- and screen-recorded using Camtasia (TechSmith Corporation, 2010). One

student, Bryan, did not give consent for audio recording. Hence, in his interview, the teacher typed

notes as he described code changes he had made, and recorded screenshots of the outcomes of his

code changes. The interviews were conducted between 1 and 3 weeks after the end of the second

unit. Each interview consisted of three parts: in the first part, students were asked to identify the

models in which they had, in some way, manipulated the code, and briefly describe these code

changes. The second part formed the bulk of the interview. Students were asked to select an

exploration to demonstrate. Each student was asked to think aloud as s/he demonstrated code

modifications s/he had made, and to explain how s/he had expected code changes would impact

model outcomes.On running themodifiedmodel, s/hewas asked to describewhether and howher/

his code change impacted model outcomes. Five students demonstrated more than one

exploration. Finally, in the third part of the interview, students were asked about their process of

Table 1

Students and their respective backgrounds in biology and programming

Student Programming Experience Academic Success in Biology

Sarah None High
Stephanie None High
Dave Some High
Jay Some Low
Ricky Some Low
Bryan Some High
Aaron Some Modest
Kyle Considerable Modest
Vinay Considerable High
Ethan Considerable Low
Mike Considerable Low
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tinkering, including what motivated him/her to engage in tinkering with code, whether s/he had

workedwith anypeers on the code, and so on.

Analysis

Data analysis took place in two parts: identifying the kinds of changes students made by

tinkeringwith themodel code, and examining theways inwhich theircontent-related explorations

alignedwith the three components of inquiry identified in the framework.

Kinds of Changes Made by Tinkering With Code. Interviews were open-coded to identify all

the changes that students reported having made. Codes were refined and redeveloped through

discussion between the first two authors, and based on commonalities agreed upon by both. This

resulted in four general categories for kinds of changes. Explorations in which students

manipulated content-relevant variables with an intended or consequent goal related to content-

specific outcomes were identified as content-related explorations. Explorations in which the

original or consequent goals were not related to biological phenomena were not coded in this

category. For instance, if a student modified how an environmental disturbance, fire, spread in the

ecosystem, but did not describe running the model to investigate resulting outcomes, the

explorationwas not coded as content related.

Besides content-related explorations, students tried to make three other kinds of changes to

the models. First, several students made aesthetic changes to the model in which they modified

visual features of agents in themodel such as their color. Students alsomade user-related changes

to make the model easier to use such as by adding a monitor to track the count of grass patches in

the model or attempting to add a notification to inform the user that a particular species in the

model was extinct. Finally, students attempted to make the model more realistic by making the

environmental disruption of fire in an ecosystem kill bugs instead of killing only the grass, or

changing thewayfire spread in themodel.

In Table 2, we present the kinds of changes each student made. Each “U” marked in a cell

denotes that the student reported having attempted at least one such change to a model. Several

students explicitly mentioned having made more than one change to many different models.

Because of the quick and iterative nature of this activity, it was often difficult for students to

delineate each change. Hence, it was not meaningful or feasible to record a count of number of

changes that students hadmade in each category.

Table 2

Four kinds of changes students made by tinkering with code

Aesthetic
Changes

Making the Model More
Realistic

User-Related
Changes

Content-Related
Explorations

Sarah U
Stephanie U U U
Dave U U U
Jay U U U
Ricky U U U
Bryan U U U
Aaron U U
Kyle U
Vinay U U
Ethan U U U U
Mike U U U
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Alignment Between Content-Related Tinkering Explorations and Engagement With Inquiry-

Based Science. Content-related explorations were identified from the second part of the

interview in which students demonstrated an exploration. Content-related explorations that

students mentioned but did not demonstrate were not included in the analysis. This

resulted in a total of 16 content-related explorations3 from interviews with nine students.

All students reported tinkering with more than one model and five students demonstrated

tinkering with more than one model. Though all 11 students engaged in some form of

content-related tinkering, 2 students’ content-related explorations were not included in this

analysis. One of these students reported not remembering the changes he had made, and

hence was unable to demonstrate them in detail. This student’s interview occurred 2 weeks

after the other interviews, and nearly a month after the units. The other student

substantially extended a model by incorporating elements from another model in the unit

in order to address a conceptual shortcoming in the model he noticed in class. He reported

working over an afternoon on a weekend with his father’s help on this change. Though

this change was content related, it involved a deliberate model extension, and not tinkering

on the fly, and hence was not included in the analysis.

For the first two components of inquiry, pursuit of open-ended investigations and sense

making, we used student demonstrations of content-related explorations from the interview

to identify indicators that provided evidence for participation in them. To do this, we went

through segments in the interviews where students demonstrated their exploration to find

specific utterances and behaviors that indicated students were pursuing an investigation or

working toward noticing and explaining what they found. For the third component,

engagement with the learning community, we used data from all 11 interviews, specifically

from the third part of the interview, to identify actions involving reaching out to or

working with other students in the class. For each of the three components, student

utterances and actions in the demonstrations as well as student reported behaviors that

aligned with the description of the component was marked as an indicator. We present a

compiled list of indicators for each component that we found in the data in Table 3.

Forms of Disciplinary Engagement. Because tinkering involved interacting with code

(a computational activity) to observe and explain resulting changes in the model (a conceptual

activity), we examined how each exploration provided opportunities for engagement in

computational and conceptual practices. Given the quick and iterative nature of students’

tinkering explorations, the computational and the conceptualwere closely intertwined in students’

tinkering.However, for the sake of analysis, we attempted to tease themapart.

By conceptual engagement, we mean coming to notice and explain changes in the biological

phenomenon and underlying mechanisms at play in the model. In this case, because the models

were related to population dynamics,we expected conceptual engagement to be related to noticing

and explaining the underlying mechanics of and relationships between variables in the context of

population dynamics. By computational engagement, wemean coming to read and interpret code

in the context of the phenomenon being modeled, and manipulate it in a meaningful way, given

their goals.

Although coming to notice and explain scientific phenomena have long been seen as

important (e.g., Lehrer et al., 2008), researchers and educators are increasingly recognizing

the importance of providing opportunities for computational thinking in science education (e.g.,

Sengupta, Kinnebrew, Basu, Biswas, &Clark, 2013;Wilkerson-Jerde,Wagh, &Wilensky, 2015).

Hence, the K-12 science education community values both these forms of engagement as ways of

engagingwith the discipline.
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Findings: Alignment Between Tinkering With Program Code and Engagement in Components
of Inquiry-Based Science

Analysis revealed that tinkering explorations with program code facilitated engagement in

the three components of inquiry-based science identified in our framework. In addition, these

tinkering explorations provided opportunities for engagement in computational and conceptual

practices. In what follows, we describe each component, and the opportunities for disciplinary

engagement afforded by each exploration.

Component 1: Pursuit of Open-Ended Investigations

By tinkering with code, students engaged in a number of open-ended investigations in which

they generated questions or goals of interest to them, and pursued these questions by tinkering

with the code for variables and rules in the model. Specifically, students engaged in three kinds of

investigations: asking questions of the model, generating questions by experimenting with

variables, and attempting to produce a specific outcome. Each of these explorations provided

opportunities for computational and conceptual engagement. Computationally, students were

Table 3

Aligning components of inquiry-based science and tinkering explorations with program code

Inquiry Component Description Indicators in Tinkering Explorations

Pursuit of open-ended
investigations

Generation and/or identification of
questions for investigation

Students:

Designing and conducting
investigations by planning and
implementing specific procedures

Generating content-relevant goals or
questions

Reading through the code
Strategically selecting and

manipulating variables relevant to
their goals

Justifying the selection of variables/
predicting the effect of changing a
variable on the model outcomes

Ignoring variables that do not seem to
affect model outcomes

Sense-making of
investigations

Analyzing data and synthesizing results
to develop claims and generate
evidence-base explanations for
claims, noticing outcomes, making
evidence-based claims, proposing
theoretical mechanisms, or
conceptual models that help predict
and explain outcomes

Noticing outcomes from code changes
Running the model several times
Comparing observations from different

model runs
Drawing general conclusions about

model outcomes from across
different model runs

Making a claim about outcomes
Postulating a mechanistic explanation

for the outcome
Engagement with the

learning
community

Students collaborating with other
students on investigations

Working together on specific
explorations

Arguing from evidence about claims,
and attempting to persuade an
audience beyond the teacher of their
claims

Helping others through their
explorations

Forming a working group
Sharing exciting findings from their

tinkering explorations with
classmates and the teacher
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pursuing open-ended investigations by reading and manipulating code as a representational

medium. Conceptually, each exploration provided opportunities for noticing and explaining

changes in the biological phenomenon being investigated. We describe each kind of exploration

with an example below, and describe the kinds of computational and conceptual learning each

facilitated.

Asking aQuestion of theModel. Students began this kind of investigation with a question and

tinkered with the code to modify variables and rules that they expected would help answer that

question. Four out of nine students demonstrated tinkering with the code to conduct an

investigation triggered by a specific question.Wepresent an example fromStephanie’s interview.

Example 1: Will Invasive Species Take Over the Bug Species? Stephanie fared well in her

biology class, and had never programmed before this unit. One of the models Stephanie tinkered

with was Bug Hunt Invaders (Novak &Wilensky, 2011) that modeled a predator–prey ecosystem

with birds, bugs, and grass. Students could introduce an invasive species into the ecosystem that

survived off grass, the same food source as the bugs.

Stephanie wanted to investigate what would happen to the bugs and invaders species if the

invaders had some advantages over the bugs. In the following excerpt, Stephanie describes her

exploration and demonstrates specific code changes she recalled havingmade:

Stephanie: Basically I made the bug–or the invaders reproduce a lot younger. I made them

faster, I don’t remember which one is, I think the higher number is faster. And then Imade it

so that they could basically live a long time, and a few times Imade the birds gain less energy

from the invaders to see if that would affect if they ate more bugs or not. Um. . .and made

theirminimumreproducing energy lower.

[In the Code tab, changes “invader-reproduce-age” from 30 to 5, “invaders-stride” from

0.3 to 0.5, “max-invaders-age” from 100 to 1000, “birds-energy-gain-from-invaders” from

25 to 20, and“min-reproduce-energy-invaders” from10 to 5.]

I:Why’d you do that?

Stephanie: So that they could reproduce even if they didn’t have like a lot of food around

them.

I: Okay, and why’d you–you also made them faster you said? Why did you make them

faster?

Stephanie: So that they could getmore food if itwasn’t like directly around them.

I:Okay, and then the other–theminimumreproducing age,why’d you do that one?

Stephanie:Because they could re–so they could reproduce like sooner than the bugs can.

I:Okay.And then the one aswewere just talking you just changed, invaders offspring?

Stephanie: Yeah, the bugs only can have so many offspring before they die, so I made it so

that the invaders can havemore before they have to die.

Stephanie wanted to give the invader species certain advantages over the bugs to

investigate whether the bugs would die out and the invaders take over or if the bugs would

survive alongside the invaders. To conduct this investigation, she read through the code
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consisting of variables for bugs and invaders (See Figure 1). While comparing variable values

for both invaders and bugs, she changed five variables to give the invaders an advantage over

the bugs: she made the invaders reproduce faster/younger than bugs and made them move

faster than the bugs to enable them to scout more quickly for food. She also gave the invaders

a longer life span than bugs, and lowered the minimum reproduction energy of invaders so they

could reproduce even if they did not have sufficient food. Finally, she enabled them to have

more offspring than bugs before dying. For each of the variables she changed, Stephanie

reasoned about its relevance in the context of her exploration. It is also evident that Stephanie’s

exploration was iterative in that she experimented with different variables and ran the model

multiple times (“a few times”). Later in the interview, Stephanie revealed her initial hypotheses,

unexpected model outcomes, and how she experimented with different approaches to figure out

what was going on.

Stephanie’s description of her tinkering exploration aligns with the first component in

a few ways. Stephanie generated a content-related question of interest to her and

conducted an exploration to answer it by tinkering with the code. She strategically selected

invaders’ variables relevant to her question and tweaked their values by comparing them to

the values of respective variables for the bugs. She manipulated the variables with an

initial prediction in mind, and adopted a new approach in the face of unexpected model

outcomes. For each of the variables she manipulated, she justified its relevance in the

context of her question. Her description also indicates that her exploration was iterative,

and she ran the model on different settings multiple times.

Figure 1. Screenshot of part of the code that Stephanie read through to manipulate. The total code of the model is
roughly four times the length of this screenshot. Scrolling through the code, Stephanie selected to focus on this part. [Color
figure canbeviewed atwileyonlinelibrary.com].
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The excerpt above indicates that Stephanie’s exploration provided opportunities for

disciplinary engagement on both computational and conceptual dimensions. Computationally,

Stephanie had to read through the code and identify variables that would differentially affect the

two species in order to examine conditions under which one species would take over another.

Doing so provided exposure to a range of factors that could play into which one would have an

advantage. Stephanie had never programmed before so she did not havemuch prior knowledge to

rely on that front. However, her familiaritywith the ecosystemmodeled in this simulation gave her

enough support to read through code, identify, and modify variables that might be relevant to her

question. As a result, this exercise provided an opportunity to learn to translate a question of

interest about biological phenomena into code. Conceptually, this exploration provided an

opportunity for Stephanie to investigate and reason about conditions under which one species

would have an advantage over another.

In Table 4, we present other instances of question-driven explorations. Like Stephanie, these

students also generated a content-related question to ask of the model on the fly, strategically

experimented with variables that they thought were relevant to their exploration and were able to

justify their selection. Students typically tried out new approaches in the face of unexpected

outcomes.

ExperimentingWith Variables. In this kind of exploration, students selected andmanipulated

variables in the code to test their impact onmodel outcomes, without any targeted question or goal

inmind. If the name of a variable sparked interest, students changed its value and ran the model to

see how it affected model outcomes. By continued experimenting, students generated questions

and goals along the way. Four out of nine students described experimenting with variables in this

way. Below, we present an excerpt from Kyle’s interview to provide an example of this kind of

exploration.

Example 2: MessingWith Variables to SeeWhat Happens.Kyle had considerable experience

in programming and faredmodestly in biology class. To demonstrate his exploration,Kyle opened

the Bug Hunt Invaders model (Novak & Wilensky, 2011), went to the Code tab, and began

perusing through the code.As he started to select variables tomanipulate, he explained his process

to the interviewer:

Kyle: Okay. Um, like the ones I’m picking right now, it’s mostly random, like–and then I’ll

just see what all they change, I’ll just start picking at random though. But the ones that

change the most are usually the ones that I remember the one I try multiple values with. The

Table 4

Additional examples of question-based explorations

Dave Question: will the population continue to expand?
After setting variables to make the population explode, Dave described running a model overnight
to see what would happen to the population over a longer period of time.

Aaron Question: what would happen if there were multiple disruptions?
Aaron described making the program allow for multiple disruptions (fires or disease).
Question: what would happen if the fire “started everywhere” instead of from one end of the
model? (did not demonstrate this exploration)

Bryan Question: can the population live forever?
Bryan described manipulating code in order to see what might happen to the population of bugs
with an unlimited food source and what might happen if there is no food source but bugs do not
require energy.
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ones that don’t change the simulation much, that don’t uh, change the outcomes much, I

typically leave thosewherever theywere.

[In the code tab, Kyle finds the variable “grass-growth-rate.” Hegoes back to the command

line on themodel, and enters the command“set grass-growth-rate 100”]

I:Okay. . .Sowhenyou’re changing them,what are you looking for?

Kyle: Um, being able to change the way–being able to change the uh, outcomes from

running the simulation, being able to like–I remember grass growth rate, that was one that I

actually remember that we played with. I think this is it at least. So yeah, I remember the

command was set. I should see what it does right now. So I think it was. So it’s 10, set, grass

growth rate. I thinkwedid things like 100 so like it’d grow really quickly. . .

Kyle described that he randomly picked variables to tweak in the model at first to figure out

how they changed outcomes in amodel run (See Figure 2).When he noticed variables that visibly

changed model outcomes, he tried multiple values with them to see how they changed model

outcomes. He reset values for variables that did not change the simulation to their original value.

Hence, his initial approach in selecting variables to manipulate was to change the simulation

outcomes in someway. To demonstrate this approach, he picked “grass regrowth rate,” a variable

he remembered having tinkered with, and changed its value from 10 to 100. It is noteworthy that

his description suggests that he tinkered with this value together with another student to see if it

would lead to the grass growing more quickly, “that was one that I actually remember that we

playedwith.”However, on running themodel in the interview, he did not notice a visible change in

themodel outcome. Sohe further increased thevalue of grass-regrowth-rate to 1,000.At this point,

the interviewer asked him to describe what his next step would be if changing a variable had

impacted themodel outcome:

I: So likewhat do you think–let’s say if youweremessing around you got that outcome,what

would happen next? Like would you say like “Oh why did that happen?” or would you say

like “Cool, let me try something different,” or what would you, what would then be the next

thought?

Figure 2. Part of codeKyle reads through to identify variable that he selects to demonstrate in interview. The entire code
of this model is much longer than this screenshot. Reading through it, Kyle decided to demonstrate manipulating this
variable. [Color figure canbeviewed atwileyonlinelibrary.com].
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Kyle: Uhh, a little bit of both because like I would assume that this because there would be

more food regenerating quicker that it’d be able to support a higher population of bugs that

would be [inaudible] the shorter conclusion then I’d go ahead and try with different values,

may be only 500 if I change it here. And then it would lower down a bit more. Or like what

was thevalue afterwhich point it didn’t reallymatter howmuch higher you got it if therewas

like a limit that it didn’t affect it anymore or. . .

After having produced some outcome in the simulation, Kyle would develop a

shorthand explanation for it—in this case, his explanation was that because grass regrowth

rate was at a higher value, it would produce food more quickly for the bugs, which in turn

would support a higher bug population. This initial explanation would generate follow-up

questions such as experimenting with a range of values for the same variable to examine

corresponding outcomes, or finding a limit beyond which a change in the variable did not

impact model outcomes.

Kyle’s tinkering exploration indicates engagement in the first component of the framework,

pursuit of open-ended investigations, in a fewways. He adopted a bottom-up approach inwhich he

started by selecting variables for experimentation to produce some kind of outcome in the model,

strategically used resulting feedback from themodel to select variables that produced an outcome,

and then pursued new questions and goals in response to that feedback. He focused on variables

that produced an outcome and ignored ones that did not seem to produce any change in themodel.

He generated new ideas for subsequent explorations on the fly as he tinkeredwith the code: further

tinkeringwith different values for a variable to see their subsequent outcomes or attempting to find

the limit for the variable beyond which it did not affect a model’s outcome. It is also noteworthy

that developing an explanation for his observations after one round of tinkering was an integral

part of his process. In other words, in order to continue with experimenting, Kyle needed to make

sense of his observations.

Wewould argue thatKyle’s exploration provided an opportunity for him to use computational

code as amedium to generate questions aswell as for engagementwith conceptual practices.

To experiment with variables, Kyle read through code of a fairly complex model to identify

variables of interest to him. Though his experimentationwas seemingly unsystematic, it presented

opportunities for computational engagement. First, hemade coarse changes to the code to look for

potential shifts, and then made more refined changes to identify more subtle differences resulting

from code changes. In doing so, he encountered the idea of threshold values, an important

computational idea.

Conceptually, this iterative process led to the beginning of explanations about how the

variable change impacted biological phenomenon. This is an important point because the

tinkering exploration necessitated an explanation to move to the next step. In other words, Kyle’s

decision aboutwhat to do next did not occur in a vacuum—itwas informed by his conceptual sense

making of impacts of his tinkering.

In Table 5, we present instances from other interviews of these kinds of explorations. These

students also messed around with variables of interest in the code, strategically selected ones that

produced some kind of outcome in the model (typically outcomes that were easily visible) and

ignored ones that did not. Students adopted an iterative approach as they tried out new ideas based

on observed outcomes, and generated newgoals along theway.

Attempting to Produce a Specific Outcome. These explorations started with students

wanting to produce a specific outcome in the model. They perused through the code in

search of variables and rules that might be relevant to the desired outcome. On selecting a

variable, they (often drastically) increased or decreased its value and ran the model to
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inspect resulting outcomes. If they did not notice their desired outcome, they returned to

the code to change the same variable in the other direction or selected different variables

until they obtained their desired outcome. Seven out of nine students demonstrated a total

of five such explorations. Below, we present Dave and Jay’s investigation undertaken to

increase the population size of bugs to over a million:

Example 3: Can We Get a Million Bugs? Dave had some experience coding and fared

modestly in biology. In the interview, Dave described himself as someone who was “not good at

programming.” Dave and Jay manipulated the Bacteria Food Hunt model (Novak & Wilensky,

2015a) in which bacteria could gain energy and reproduce, or lose energy and die with the goal of

growing the bacteria population size so that they would have millions of bacteria. In the excerpt

below, Dave begins to demonstrate to the interviewer the specific code changes he made to the

model in an effort to produce this outcome.

Dave:Minimum-reproduce-energy-bacteria� I set that to 0 so they just reproduce infinitely

(Laughing).

[Changes “minimum-reproduce-energy-bacteria” from60 to 0 in the code]

Dave:Max-reproduce-off-spring to 50

I:Whatwas it before?

Dave: 0�or 2. [Changes “max-reproduce-off-spring” from2 to 50]

Dave: I set bacteria size to 2 but I didn’t see a noticeable change for that. [Changes

“bacteria-size” from 1 to 2.] Amount-of-food-bacteria-eat. I moved that to 500. [Changes

“Amount-of-food-bacteria-eat” from5 to 500.]

To produce an outcome of having a million bugs, Dave and Jay drastically altered some of

the existing variables: they decreased the minimum reproduction energy of the bacteria to 0

so they would reproduce infinitely, increased the maximum offspring a bacteria could have,

changed the bacteria size, and the amount of food they ate. While demonstrating these code

changes, Dave also noted that the change in the size of the bacteria had not visibly changed model

outcomes.

At this point, the interviewer asked them to explainwhy theymade those code changes.

Table 5

Additional examples of explorations by experimenting with variables

Sarah Manipulated speed, energy, and age-related variables for the grass, the bugs, the invaders, and the
birds. By changing the speed, energy, and age-related variables, Sarah started questioning what
would happen to the populations (Would the populations completely die out? Would the
populations take over?).

Ethan Described looking through the code to find interesting variables. When he found an interesting
variable he would change it to see what would happen (Ethan described this practice as one of
his approaches to manipulating the code. He did not give specific examples of this approach).

Aaron Started out tinkering by randomly changing variables to see what it would do to the model, and to
see if he could understand what the modeler was trying to do with the model (Aaron described
this practices as one of his approaches to manipulating the code. He did not give specific
examples).
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Dave:Because Iwanted tomake the amount that they eat higher just because 5 is likemore a

lower number but it’s also more realistic and I just wanted to boost the good stats and lower

the bad stats. [Scrolling down and reading through the code as he speaks] And then I also

just saw this. I set “max-plant-energy” to, I think, a million. [Changes “max-plant-energy”

from100 to 1,000,000.]

I:Whydid you do that?

Dave: Because (laughing) that way they just like continually get energy no matter cause

theirmovement is not gonna like if theyget onegrass they are gonna be alive for like. . .

I: Ever?

Dave:Yeah prettymuch (Laughing)

Dave justified changing the variables as an attempt to “boost the good stats and lower

the bad stats.” That is, he changed variables that would help him meet their goal of

producing a million bacteria (e.g., decreasing the amount of energy each bacteria needed

to reproduce, increasing the maximum number of offspring each bacteria could have, and

increasing the amount of food a bacteria ate). He described increasing the amount of

energy each plant provided (patch of grass, in NetLogo parlance) so bacteria can get

enough energy to live forever by eating just one unit of grass. He also alluded to the

movement of bugs, perhaps because the dramatic spike in variables slowed down the speed

of the model considerably, and hence the bacteria appeared to move very little through a

model run (See Figure 3). This code change ensured that the bacteria were not

disadvantaged by their lack of movement.4

Indeed, when Dave and Jay ran the model, the bacteria population increased from 5 to over

100,000 in a few ticks (unit of time in NetLogo), with bacteria appearing in thick clusters due to

the model having slowed down considerably, which made them laugh. In the interview, the boys

described what caused this outcome as well as why there were fewer bacteria in the right

ecosystem than in the left one (See Figure 1).

By reading through the code, Dave and Jay were exposed to underlying computational

mechanics of this ecological system. In order to meet their goal outcome, they engagedwith these

mechanics to think about how to manipulate them to achieve the desirable outcome. Though

playfully, in this excerpt, see Dave and Jay reading through the code andmaking inferences about

how specific variables would impact the bacteria population size. The activity they engage in is

like engineering. Learning to read through the code to identify and think about what kinds of

changes would produce their desired outcome. This computational strand here is intertwined with

opportunities for conceptual engagement.Making these changes presented opportunities for them

to reason about why specific changes produced an outcome, specific changes did not, and contrast

two different ecosystems. It is important to note that here again a frame of explaining what

happened was necessary to continue messing about with the code. It was a necessary part of the

process.

Dave and Jay’s exploration reflects engagement in the pursuit of an open-ended

investigation: they began their exploration with an initial goal of producing a million bugs,

and carefully selected variables that would enable the desired outcome. When doing this,

they took notice of variables that affected or did not seem to affect model outcomes, and

justified the relevance of their variable selection in the context of their goals to draw a

comparison of the investigation in two different scenarios. Table 6 summarizes other

instances of students engaging in these kinds of explorations.
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Component 2: Sense-Making of Investigations

The second component, sense making of investigations involved noticing patterns and

making observations in the model outcomes, making a claim to describe how code changes

impacted model outcomes as well as generating some explanation for it. This component was

closely intertwinedwith students generating goals and tinkeringwith the code. That is, attempting

tomake sense of the impact of their code change naturally followed from tinkering with code, and

deciding next steps. This natural follow-up is evident in the examples already presented. For

instance, in Example 1, Kyle developed a shorthand explanation based on his observations, and

generated ideas for his next exploration. His explanation suggested evidence of new information

about the question, and his pursuing investigation suggested learning how tomeaningfully follow

through investigations. Kyle fluidly alternated between sense making and designing new

investigations. To illustrate a specific instance of students’ sense making, we present an excerpt

fromAaron’s interview.

Example 4: Explaining the Impact of Multiple Disruptions on an Ecosystem. Aaron fared

modestly in biology and had some experience programming. One of the models Aaron tweaked

Figure 3. Model outcome fromDave’s outcome-based exploration: bacteria reproducing in circles. [Color figure can be
viewed atwileyonlinelibrary.com].

Table 6

Additional examples of outcome-based explorations

Ethan Goal: to increase the population of the bugs to over a million
Changes made: Ethan adjusted the amount of energy bugs gain from grass and the

amount of energy required to reproduce
Aaron and

Ricky
Goal: to destroy the population of bugs
Changes made: enabled the program to set multiple disruptions (fires or disease)

Bryan Goal: to make the population to live forever
Changes made: changed the amount of food bacteria eat in the bacteria model

Sarah Goal: to “Explode” the population
Changes made: adjusted the amount of grass in the model and the energy use of bugs
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was the Bug Hunt Disruptions model (Novak & Wilensky, 2015b) in which students could add

disruptions such as wild fires or diseases to an ecosystem with bugs and grass. The model only

permitted adding a single wildfire or disease in one model run, but Aaron wanted to investigate

what would happen if he set multiplewildfires or addedmultiple disruptions. He tinkered with the

code to conduct a question-based exploration to make sense of this. In the interview, Aaron

demonstrated this by changing the code, “set left-ecosystem-disrupted? true” to “false” in a button

widget on the model interface. Then, he ran the simulation to demonstrate that he could now set

multiple disruptions in the ecosystem. Prior to running the model, the interviewer asked Aaron

what he had expectedmultiple disruptionswould do:

I:Anddid you. . .what did you expectwould happenwhenyou did that?

Aaron: I can’t remember whether I did them in quick succession or it if it was at regular

intervals, but, um, I kind of expected it to like do the same thing. But with the wildfires at

least because if you did a wildfire while it was fluctuating and had larger fluctuations and

then you did onewhen it had smaller fluctuations, the onewith smaller fluctuations had less

of an effect.

[Starts running the model, and repeatedly clicks on the button to set disruptions. The bug

population decreases each time Aaron clicks, but several bugs remain and the population

quickly re-grows.]

Aaron could not recall whether he had set disruptions in rapid succession or at regular

intervals, but he had initially expected that both disruptionswould impact the ecosystem in similar

ways. From his previous explorations, he claimed that there was a relationship between size of

fluctuations in the bug and grass populations and the impact of the disruptions. He also claimed

that when disruptions were added to the model “when there were more bugs, there was less of an

effect,” that is, the fire died out quickly.

Later in the interview, Aaron proposed a mechanism for the relationship between size of the

bug population and duration of the disruption:

Aaron: Well, um, what I was thinking was because there’s more bugs there’s less grass

available for the fire to consume because the fire is kind of like. . .both the fire and the grass
are getting rid of the� or fire and the bugs are getting rid of the grass. So if there are more

bugs there’s less grass for the fire to burn.

Aaron claimed that when disruptions were added to the model when there were more bugs,

the fire died out more quickly. He postulated an explanation for this relationship: that the more

bugs therewere in themodel, themore grass was being consumed because the bugs ate grass. This

resulted in there being overall lesser grass for the fire to burn, which led to the fire dying out more

quicklywhen thereweremore bugs in themodel.

This exploration provided Aaron with opportunities for noticing and making sense of the

relationship between fluctuation size and impact of disturbances, one that Aaron had not

previously considered. He started the exploration by assuming that each disruption would have a

similar impact on the population, an inaccurate hypothesis.Modifying the code and setting this up

helped Aaron investigate previously unfamiliar conceptual relationships—thinking about the

relationship between size of the fluctuation and impact of the disturbance.

Aaron’s tinkering exploration provided opportunities for him to run themodel multiple times

to make meaningful observations about the impact of multiple disruptions on model outcomes,

use evidence from themodel tomake claims, and propose mechanistic explanations for his claim.
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These indicators for sense-making of an investigation were visible in other students’ tinkering

exploration aswell: students sought changes inmodel outcomes as a result of their tinkering,made

observations about these outcomes, attempted to connect the outcomes to code changes bymaking

a claim about their observations, and provided an explanation for the outcome.While the richness

of student explanations varied across explorations, every student had pieces of an explanation for

how their tinkering exploration impacted model outcomes. Hence, engaging in these tinkering

explorations provided a space for students to learn to use code to ask questions of the model, and

make sense of newconceptual connections.

Component 3: Engagement With a Learning Community

Data from student interviews indicated that tinkeringwith codewas a student-centric activity

that sparked and sustained engagement with a community consisting of other students. We

characterize this community as “student-centric” because the tinkeringwas initiated and sustained

by the students. When asked why they started tinkering with the code in the interview, students

either reported that they started on their own or were motivated by noticing other students

tinkeringwith code.Modifying or evenviewing themodel’s codewas not a part of the curriculum.

Moreover, none of the students reportedmodifying code or sharing theirmodificationswith others

in response to the teacher’s suggestion or prompting.

Within this student-centric community, students shared their work with each other, and

helped each other out. Students’ interviews indicated that each of the 11 students had engaged

with at least one other student in this group to share their observations and/or help each other out.

Students reported that while working with others in a group, they sometimes worked on the same

explorations, but also worked on different ones. Table 7 illustrates specific sub-groups of students

whoworked together.

For instance, Vinay, Sarah, and Stephanie worked together on their tinkering explorations in

their free time in class. Sarah andStephaniewhohadnever programmedbefore, describedwanting

to tinker with the code after noticing Vinay making code changes in class. Perhaps surprisingly,

Vinay, who had experience in programming mentioned taking help in making sense of his

exploration fromSarah andStephanie in someof his explorations.

Kyle reported that Ethan, Aaron, Ricky, and he formed a lunch group to work together in the

weeks during the unit. In his interview, he described the role of these lunches:

Table 7

Engagement with the learning community through tinkering with code

Sharing Findings With
the Teacher Student Collaboration With Classmates

Yes Sarah Worked together in class to help each other out
Vinay

Stephanie
Dave Worked together, sometimes on the same explorations, and

sometimes on different onesJay
Not often Aaron Worked in the same space over lunch time, independently

tinkering, but sharing cool findingsYes Ethan
Kyle

Not often Ricky
Yes Mike Was shown code changes by a group of students

Sought help from an expert programmer, his father
Bryan Worked with Dave on some investigations
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Kyle: Uhh, every now and then we’d share some of our findings, it wasn’t that often though.

Like occasionally like if I’d noticed that, I remember fromearlier, the population size spiked

dramatically. Usually the dramatic changes we’ll show to each other, be like “Hey, if you

change this variable, the population size goes crazy.” So those are the things that we’d share

more. These, something like this, I’d probably just explore in greater detail, once I found the

limit Imightmention it to them.

AsKyle described, students in this groupworked in the same space on their own explorations,

pursuing in-depth questions of interest to them. Though they were each working on independent

explorations, when one of them stumbled onto an exciting finding such as a finding a variable that

made the population spike dramatically, hewould share it with the others. Hence, the lunch group

became a space for these students to pursue and investigate questions of interest to them, and share

interesting outcomes of their pursuitswith their classmates.

Other students alsovoluntarily sharedfindings from theirworkwith one another. For instance,

Dave mentioned that he had tinkered with code to increase the bug population and kept it running

overnight to see how big the population could get. The next day, he shared his observations with

his classmates and the teacher.

These findings indicate that students formed and sustained a community in which they

worked together on their explorations and shared observations with each other. The target

audiencewas other students, though someof them informally shared theirworkwith the teacher as

well.

We see the formation of this community as noteworthy and important to engagement in

inquiry-based science because it was driven by student initiative and interest. Through this

activity, students coalesced into smaller groups, helping each other and occasionally sharing their

work. The student-driven nature of this activity reflected agency, and authentic engagement

around the science. This thenmarks the productive beginnings of a space, which can be leveraged

for engagement in scientific practices such as argumentation in which students share claims and

supporting evidence from their investigationswith other students.

We set out to characterize the ways in which tinkering with content-related code facilitated

engagement in inquiry-based science, and found evidence for engagement in each of the three

components. We also demonstrated the ways in which these explorations provided opportunities

for disciplinary engagement in the forms of computational and conceptual engagement. Students

generated content-related goals or questions on the fly and devised ways to pursue these

investigations by manipulating code of their models. Students’ tinkering explorations were

iteratively designed in that they ran the model multiple times, tried out different approaches in

the face of unexpected outcomes, noticed model outcomes, and made claims about their

observations and postulatedmechanistic explanations for the outcomes. Finally, students engaged

with a learning community by sharing findings, collaborating with, and helping their classmates.

Based on these findings, we argue that tinkering with the code facilitated engagement with

inquiry-based science for these students, and provided opportunities for computational and

conceptual disciplinary engagement.

Discussion

Inquiry-based science has focused on engaging students in scientific practices while

Constructionism has emphasized “thinking with” code by building, extending, or exploring

computational objects. Our goal was to bridge these two bodies to argue that even a simple formof

interacting with program code such as playful tinkering can facilitate participation in the goals of

inquiry-based science. To make this argument, we examined students’ on the fly tinkering

explorations using a conceptual framework consisting of three components of inquiry-based
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science: pursuit of investigations, sense-making of investigations, and engagement with the

learning community.

The analysis revealed that by tinkering with program code, students generated and pursued

three kinds of explorations: manipulating variables to see how it would impact model outcomes

(Example 1), asking specific questions of the model (Example 2), and attempting to generate

specific outcomes in the model (Example 3). In each exploration, students perused through the

code, and strategically selected variables and rules with which to tinker. On tweakingmodel code,

they ran themodel to examine changes in outcomes.When running themodel, students developed

claims for how their code changes might have impacted the model. This process was iterative as

students also tried out new approaches in the face of unexpected outcomes. Both noticing

outcomes resulting from code changes, and constructing candidate explanations for the outcomes

were an inherent part of the tinkering process. Students also generated candidate explanations to

connect their code changes to respective model outcomes. Finally, tinkering with code initiated

collaboration, sharing and a dialog centered about their explorations and findings among this

group of students.

This finding that students’ tinkering explorations with code facilitated productive

forms of inquiry is intriguing and particularly noteworthy because it occurred in the

absence of explicitly structured guidance from the teacher or strategic support from the

modeling environment.5 We believe that the very availability of program code representing

the scientific content of the model triggered the generation of questions of interest to

students, and their explorations and sharing with the community naturally followed from

these explorations. The availability of code made explicit the variables and rules

underlying the scientific content represented in the model and allowed for the generation

and pursuit of a diverse set of explorations which involved “messing” with the code. In

addition, because students were deliberately selecting and changing variables, they were

able to explain what a variable did, and justify their selection.

We argue that there are unique affordances to tinkering or interacting with program code as a

way to engage in inquiry. First, interacting with program code provides students with access to

the structures, variables, and rules underlying the scientific phenomenon. While at least some

variables are usually available for manipulation on the user interface, perusing through code

provides students with access to a wider bandwidth of the conceptual structure of a model. This

wider bandwidth allowed for the generation of a diverse set of investigations. In addition,

interacting with the code offers the learning opportunity to look inside the model, break it down,

and make its underlying structure more transparent (Resnick, Berg, & Eisenberg, 2000). This

transparency is likely to have numerous advantages: making students aware of the mechanisms at

work and helping them conceptualize a model as a representation of a scientific phenomenon that

foregrounds some aspects and backgrounds others. The availability is also likely to make a

scientificmodel feel like a “work in progress” that can bemodified, extended, and added to, much

like work in scientific inquiry. One student, Aaron, explicitly voiced appreciation for the

availability of the code. He said that he “found it really interesting that they left the Code tabs and

the editing buttons and the Command line there,” and that he “like[d] that.” When asked to

elaborate, he said that “generally when you give a program to someone, you do not leave all of the

development tools there,” but he liked that it was there because he was “able to see the code and

look atwhat theywere doing.”

Besides the very availability of program code enabling the familiarizing and generation of

questions, there are other affordances of interacting with code to engage in inquiry. Research has

shown that programming and expressing through code helps students think through and learn

aboutmechanisms (Sherin, 2001;Wagh, 2016;Wilensky&Reisman, 2006).
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Tinkeringwith code as away to facilitate inquiry-based science also has social advantages. In

the study, it was a socially pervasive activity throughwhich students initiated shared findingswith

each other and the teacher, and helped each other out. Perhaps tinkering as a children-centric

socialization practice (Petre&Blackwell, 2007) helped to circumvent the authority of the teacher,

and connected students to one another. Varying levels of expertise in programming across

students, and the teacher, might have further bolstered this community, helping students connect

with one another. In science classrooms, researchers strive to create learning communities in

which students direct their inquiry and claims to other students as the audience rather than the

teacher (Berland & Reiser, 2010), a dynamic that naturally arose in this setting. This dynamic

offers promise for using tinkeringwith code as away to support authentic disciplinary engagement

at an individual and social level.

Recommendations: Manipulating Program Code to Engage in Inquiry

Supporting students in interacting with program code in science classrooms is a design issue

that requires making the code available for manipulation, and, designing activities that value and

support experimentationwith code.

Hoyles, Noss, and Adamson (2002) distinguish between the platform and superstructure

level of a microworld. The platform is “the base level at which it is possible for users (rather than

professional programmers) to interact” (p. 9). On the other hand, the superstructure level

“describes the objects in themicroworld andways tomanipulate them.” The authors assert that the

platform level should be “intrusive” (p. 9) so that its structures and rules are visible at the

superstructure level. However, they add that making the platform level directly accessible enables

these structures and rules to become available for inspection andmanipulation. The availability of

the platform level has been a central design feature ofmany constructionist technologies including

NetLogo. Here, we are arguing for making code available in a way that invites and supports

students (many of whom may be novice programmers) in science classrooms to engage in

interacting with the code. We can infer clues from commonalities across students’ tinkering

explorations in this study to do this.

The platform level could constitute a tinker-friendly segment of code containing properties

and rules of structures in the model that are inherently more interesting or relevant to mess around

with than others. In particular, a tinker-friendly code segment can be designed based on three

guidelines for tinkerability put forth by Resnick and Rosenbaum (2013): immediate feedback,

fluid experimentation, and open exploration.

To provide immediate feedback, the platform level can contain variables and behaviors that

quickly produce (or not, if that is expected to elicit surprise like it did for Stephanie in Example 2)

interesting outcomes in the model. In our study, this theme repeatedly emerged in students’

tinkering explorations: students tweaked variables that produced visible outcomes, and ignored

ones that did not. The second principle, “fluid experimentation” suggests that tinkerable

environments should allow for quick iterations, and rapid generation and refinement of ideas.

To facilitate quick generation of ideas, properties and rules directly related to learners’ model

investigations at the superstructure level could be included in the available code. Thiswould allow

learners to leverage insights from their model investigations to ensure a seamless transition to

tinkering with code. For instance, several students in our study tweaked energy variables of the

agents and grass, as well as rules related to reproduction and death, which were related to their

curricular activities. Subsequently, their tinkering explorations focused on the conceptual aspects

of computational modeling rather than the technical aspects of programming. To follow the

third design principle, open exploration, this tinker-friendly code segment could allow for a

diverse set of investigations to allow variability across explorations.Wewould emphasize that the
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tinker-friendly segment need not only support content-related explorations. Instead, it could

support a sampling of a spectrum of kinds of changes learners make, including changes to

personalize theirmodel by changing shapes and colors aswell asmaking it easier to use.

Conclusions

Our goal was to bridge the inquiry-based science and constructionist bodies of literature to

argue that interacting with program code underlying computational models can facilitate

engagement in inquiry-based science. To make our case, we analyzed instances of data students

demonstrating on the fly tinkering explorations with code using a framework for inquiry-based

science. Findings revealed that even tinkering with code facilitated engagement in dimensions of

inquiry-based science. In addition, tinkering with code provided opportunities for disciplinary

engagement along two dimensions: computational engagement by using code as a representa-

tional medium to conduct scientific investigations, and conceptual engagement by coming to

observe and trying to make sense of how their code changes impacted the phenomenon being

modeled. We discussed this alignment and proposed recommendations for incorporating

interactingwith programcode as an inquiry practice inK-12 science classrooms.

Notes
1
Primitives are units of construction or building blocks in a construction environment or

microworld. It iswhat learners use to build a program.
2
The teacher is the second author of this paper.
3
Two students, Ricky and Aaron, collaborated on and jointly conducted one of these 16

explorations.
4
This code change reflected a lack of his understanding of the notion of “time” in a NetLogo

model, and that itwas asynchronouswith real time.
5
Model code in NetLogo is usually commented as is good coding practice and names of

variables are easily interpretable. Though thiswould have supported students, it was not explicitly

designedwith this goal for the units.
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